
PHYSICAL REVIEW E MAY 1999VOLUME 59, NUMBER 5
Ising spin glass with arbitrary spin beyond the mean field theory

K. Walasek, K. Lukierska-Walasek, and M. Wodawski
Institute of Physics, Pedagogical University, Plac Słowian´ski 6, 65-069 Zielona Go´ra, Poland

~Received 14 August 1998!

We consider the Ising spin glass for the arbitrary spinS with the short-ranged interaction using the Bethe-
Peierls approximation previously formulated by Serva and Paladin@Phys. Rev. E.54, 4637 ~1996!# for the
same system but limited toS51/2. Results obtained by us for arbitraryS are not a simple generalization of
those forS51/2. In this paper we mainly concentrate our studies on the calculation of the critical temperature
and the linear susceptibility in the paramagnetic phase as functions of the dimension of the system and spin
numberS. These dependences are illustrated by corresponding plots.@S1063-651X~99!16605-4#

PACS number~s!: 05.50.1q, 75.10.Nr, 75.50.Lk
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I. INTRODUCTION

The study of glasses is today one of the most relevant
actual problems in condensed matter physics. In particu
research around spin glasses in finite dimensions is very
tive, since it is still unclear if they share some the qualitat
features of the mean-field theory of the Sherringto
Kirkpatrick ~SK! model @1–3# However, there are recen
studies@4–6# that indicate difficulties in extending the mo
lecular field approximation~MFA! scenario to realistic spin
glasses with short-range interaction and decidinga priori
which properties survive and which must be appropriat
modified. Recently, in an interesting paper@7#, an approach
beyond the MFA has been achieved for ad-dimensional
Ising spin glass~SG! model (S51/2) with short-range inter-
actions on a real lattice using an extension of the Bet
Peierls approximation~BPA! @8# to the spin glass problem
via the replica trick. This approach seems to be very pro
ising for establishing a direct contact with the results o
tained by different authors for the infinite-ranged version a
for controlling possible deviations for short-ranged glas
from the well acquired MFA scenario. Quite recently@9# the
Parisi@3# ansatz has been investigated for the Ising spin g
with S51/2, using the generalized form of the Bethe-Peie
method called by the authors ‘‘a variational approach
where finite clusters of spins interact and the sample ave
ing is properly taken into account. The result is qualitative
similar to that obtained in the frame of the MFA with som
quantitative-modifications due to short-range order inter
tions.

All studies mentioned above have been performed for
standard Ising model withS51/2. Therefore it seems to b
quite interesting to extend the methods applied to the Is
spin glass, where the number of spin is arbitrary. In spite
numerous works on the Ising modelS51/2, little attention
has been devoted to the same system with arbitraryS. In the
spin glasses solutions for the arbitraryS there is not a simple
generalization such as that for the Ising model withS51/2.
The reason is that for higher spins, (Si)

nÞSi or const, which
leads to parameters that are diagonal in replica indices.
considerably affects the results for theS51/2 Ising SG.

We will use the Bethe-Peierls approximation~BPA! @7#
with some necessary modifications. As we will see the cr
cal temperature depends as well on the dimension of
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system as it does on the spin number. In addition, lin
susceptibility, even in the paramagnetic phase, is a nontri
function of the temperature.

The paper is organized as follows. In Sec. II we brie
present the idea of the Bethe-Peierls approach for the
Ising spin glass@7# and give equations for the critical tem
perature and linear susceptibility in the paramagnetic ph
when the spin numberS is arbitrary. Section III contains
plots showing the dependence of the critical temperature
the dimension and the value of the spin number. Finally
Sec. IV some conclusions are drawn.

II. BETHE-PEIERLS METHOD FOR SPIN GLASSES

Our starting point is the Hamiltonian of the Ising mod
with arbitrary spin:

H52
1

2 (
i , j

Ji , jSiSj , ~1!

whereSi5Si
z is the z component of the spin. As usual, e

genvalues ofSi run from 2S to S, whereS is arbitrary. In
Eq. ~1! the summation overi , j comprises only nearest neigh
bors. Interaction parametersJi , j are variables obeying ran
dom distribution; that is, dichotomic, Gaussian, etc. For s
plicity, in order not to complicate the main idea, we w
assume thatJi , j is a random variable withJi , j56J, with
equal probability for a1 or 2 sign.

Using the replica trick the free energy can be written
follows:

2bF5 lim
n→0

1

n
Tr expF2b(

a
HaG

av

, ~2!

where @ #av denotes a sample averaging andHa is the
replicated Hamiltonian~1!.

Working directly on the real lattice, the basic idea of t
BPA for spin glasses@7# is to take into account the correc
interactions inside replicated clusters~cl!, consisting of a
central spin S0 and its 2d nearest neighborsSi ,$ i 51,
•••,2d%, and to describe the interactions of the cluster b
ders with the remnant of the system by means of effec
5187 ©1999 The American Physical Society
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couplings among replicas to be determined self-consisten
Therefore the free energy in this approximation can be w
ten as follows:

2bF5 lim
n→0

1

n
ln Zn , ~3!

where

Zn5K~b!TrH FexpS b (
i 51,a

2d

J0,iS0,aSi ,aD G
av

3expS b2J2

2
m(

i 51

2d

(
a

Si ,a
2 D

3expS b2J2

2 (
i 51

2d

(
aÞa8

ma,a8Si ,aSi ,a8D J . ~4!

In Eq. ~4! a51,•••,n denotes the replica indices;K(b) is a
multiplicative constant that depends on the temperature
not on the lateral spins of the cluster; andma,a8 and m
[ma,a , according to the Bethe-Peierls ansatz, describe
interaction between the ‘‘external world’’ and the later
spins of the replicated cluster. The difference between
~4! and the corresponding formula of Ref.@7# is that in Eq.
~4! we have the additional parameterm. This is a conse-
quence of the fact that for an arbitrary spinSk,a

2 Þ1/4.
Effective couplingsma,a8 andm are calculated from the

following equations:

^Si ,aSi ,a8&5^S0,aS0,a8& , ~5!

with i 51,•••,2d, where

^•••&5
Tr exp~2bHeff!•••

Tr exp~2bHeff!
, ~6!

with

Heff5
21

b
lnFexpS b(

i ,a
J0,iS0,aSi ,aD G

av

2
bJ2

2
m(

i ,a
Si ,a

2

2
bJ2

2 (
aÞa8

(
i 51

2d

ma,a8Si ,aSi ,a8 . ~7!

Above and at the critical point the spin glass parame
^Sk,aSk,a8&5qa,a850 for aÞa8 ~but not for a5a8). It is
easy to calculate that the effective couplingsmaÞa8 obey the
same conditions. If we are interested in the calculation of
critical temperature it is sufficient to formulate Eq.~5! to the
lowest order inmaÞa8 . After some straightforward algebr
we get foraÞa8 the following result:

^Si ,aSi ,a8&'b2J2ma,a8(
j 51

2d

@^SiSj&0#av, ~8!

with i , j 51,•••,2d and

^S0,aS0,a8&'b2J2ma,a8(
i 51

2d

@^S0Sj&0#av, ~9!
ly.
t-

ut

e

q.
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e

whereaÞa8 and

^•••&05

Tr expS b(
i 51

2d

J0,iS0Si1
b2J2

2
m(

i 51

2d

Si
2D •••

Tr expS b(
i 51

2d

J0,iS0Si1
b2J2

2
m(

i 51

2d

Si
2D

5

E
2`

`

)
i 51

2d

DxiTr expFb(
i 51

2d

~J0,iS01Jm1/2xi !Si G•••
E

2`

`

)
i 51

2d

DxiTr expFb(
i 51

2d

~J0,iS01Jm1/2xi !Si G ,

~10!

with

Dxi5
1

A2p
exp~2xi

2/2!dxi . ~11!

Thus due to the translational symmetry for averaged o
disorder correlation functions the equation for the critic
temperature takes the form

@^Si
2&0

2#av1~2d21!@^SiSj&0
2#av52d@^S0Si&0

2#av, ~12!

where iÞ j numbers of arbitrary lateral spins of the cluste
Additionally we must to take into account the equation

@^Si
2&0

2#av5@^S0
2&0

2#av. ~13!

With Eqs. ~9! and ~10!, after detailed calculations we ca
formulate the equation for the critical temperature in terms
functions F0 to F4, which depend on the temperature, d
mension of the system, and the spin number. The sam
averaged correlation function withiÞ j has the form

@^SiSj&0
2#av5

F1
2

F0
2

, ~14!

whereas

@^S0Si&0
2#av5

F3
2

F0
2

, ~15!

@^Si
2&0

2#av5
F2

2

F0
2

, ~16!

and

@^S0
2&0

2#av5
F4

2

F0
2

. ~17!

The form of functionsFl( l 50,•••,4) is the following:

F05 (
M52S

S H E
2`

`

DxQS@bJS~M1m1/2x!#J 2d

, ~18!
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F15S2 (
M52S

S H E
2`

`

DxBS@bJS~M1m1/2x!#QS

3@bJS~M1m1/2x!#J 2

3H E
2`

`

DxQS@bJS~M1m1/2x!#J 2d22

, ~19!

F25S (
M52S

S S E
2`

`

Dx$BS8@bJS~M1m1/2x!#

1BS
2@bJS~M1m1/2x!#%QS@bJS~M1m1/2x!# D

3H E
2`

`

DxQS@bJS~M1m1/2x!#J 2d21

, ~20!

F35S (
M52S

S S M H E
2`

`

DxBS@bJS~M1m1/2x!#QS

3@bJS~M1m1/2x!#J
3H E

2`

`

DxQS@bJS~M1m1/2x!#J 2d21D , ~21!

and

F45 (
M52S

S

M2H E
2`

`

DxQS@bJS~M1m1/2x!#J 2d

. ~22!

In Eqs.~16!–~20!

QS~y!5

sinhFyS 11
1

2SD G
sinhS y

2SD ~23!

where

BS~y!5S 11
1

2SD cothF S 11
1

2SD yG2
1

2S
cothS y

2SD ,

~24!

is the Brillouin function, and

BS8~y!5
dBS8~y!

dy
. ~25!

Taking into account Eqs.~12! and ~13! together with Eqs.
~14!–~17! we can write equations for the critical temperatu
as follows:

~2d21!F1
21F2

252dF3
2 ~26!

and

F25F4 . ~27!
Obviously the solution of Eqs.~26! and~27! needs numerica
calculations.

As concerns the linear susceptibility in zero magne
field, we define it as follows:

x5
1

N (
i

N F S d^Si&T,h

dh D
uh50

G
av

, ~28!

where^ &T,h denotes the thermal averaging with the Ham
tonian~1!, when the term2h( i

NSi is added. A first step is to
calculate the susceptibility in the paramagnetic phase w
local magnetizationŝSi&T50, where ^Si&T5^Si&T,h50. In
that case

x5
b

N (
i , j

N

@^SiSj&T#av. ~29!

It is easy to show that forh50 and the symmetric probabil
ity distribution for Ji , j ,

@^SiSj&T#av5d i , j@^Si
2&T#av. ~30!

After some calculation~see, for example, Ref.@10#! we get
that

x5b@^Sk
2&0#av, ~31!

with k50,•••,2d.

III. RESULTS

Our results are illustrated by plots in Figs. 1–4. In Fig.
the dependence of the critical temperatureTc ~in units of the
constantJ) scaled byA2d of the dimension of the systemd
for a few values of spinS51/2, 1, 3/2, 2, and 3 is given. Th
larger the spin, the higher the corresponding line. In Fig
variations of theTc /A2d with spin number ford52 ~the
lower line! and d53 ~the upper line! are plotted. It is seen

FIG. 1. Variation of the critical temperatureT rescaled by the
factor (2d)21/2 with the dimensiond of the system for spin num-
bers S51/2, 1, 3/2, 2, and 3 . The larger the spin, the higher
corresponding line. HereJ[1.
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that the critical temperature, in general, increases with
increasing of the spin number, but this dependence canno
represented in an explicit form and is more nontrivial co
pared to simple magnetic systems, such as, for examp
ferromagnet whereTc;S. The reason for the scaling of th
crtitical temperature byA2d will be explained in Sec. V. In
Figs. 3 and 4 we show the dependence of the linear sus
tibility in the paramagnetic phase of the temperatureJ
[1) for d52 andd53, respectively. The values ofS are
1, 3/2, and 2. The larger the spin, the higher the correspo
ing line. Obviously the lines in Figs. 3 and 4 terminate at
critical temperature, since to calculatex below Tc we must
enter into theory the spin glass order parameters. At pre
our purpose is only to show that the linear susceptibil

FIG. 2. Rescaling critical temperatureTc /(2d)21/2 versus the
spinS for d52 andd53 marked by lower and upper lines, respe
tively. HereJ[1.

FIG. 3. Linear susceptibilityx in the paramagnetic state as
function of the temperature in units ofJ for d52 andS51, 3/2, and
2. The larger the spin, the higher the corresponding line.
e
be
-
, a

p-

d-
e

nt
,

even in the paramagnetic phase, is a nontrivial function
the temperature for spins higher thanS51/2. From plots in
Figs. 3 and 4 a tendency forx to increase with increasing o
S is seen.

IV. FINAL REMARKS

Studies of the spin glasses with short-ranged interac
are undoubtedly a difficult problem among the theories
amorphous systems, since the complicated nature of the
domness interplays spatial correlations of spins. At pres
there is practically no developed systematic method to inv
tigate such systems, as in the case of the long-ranged~more
strictly, infinite-ranged! Sherrington-Kirkpatrick type models
where MFA is valid@1,2#. It is expected that the BPA will be
able to give a more accurate estimation of the critical te
perature for the spin glass systems with short-range inte
tion than the MFA. As concerns our problem, a natural qu
tion arises about what will result when the dimension of t
system is infinite. It can be easily shown that ifd→`, one
obtains the Sherrington-Kirkpatrick theory for the Ising sp
glass with an arbitrary spin. After rescalingJi , j→Ji , j /A2d,
J→J/A2d and changingma,a852dqaÞa8 ,m52dp with p
5qa,a , proceeding in a line similar to that in Ref.@7#, one
obtains

qaÞa85^SaSa8& ~32!

and

p5^Sa
2&, ~33!

where

FIG. 4. Linear susceptibilityx in the paramagnetic state as
function of the temperature in units ofJ for d53 andS51, 3/2, and
2. The larger the spin, the higher the corresponding line.
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^•••&5

Tr expS b2J2

2 (
aÞa8

qa,a8SaSa81p(
a

§ a
2 D •••

Tr expS b2J2

2 (
aÞa8

qa,a8SaSa81p(
a

Sa
2 D

1O~d21/2!, ~34!

whereSa is thez component of the spin operator referred
an arbitrary site. Hence in Figs. 1 and 2, in order to obt
reasonable results for higher spins, we scaled the crit
temperature, expressed in unitsJ, by A2d. We are aware tha
n
al

our consideration is a first step toward recognizing so
properties of the Ising SG with an arbitrary spin. It would
interesting to obtain the properties of the system in the
phase, at least in a replica symmetric theory. This is a co
plicated task even forS51/2; therefore, further work will be
necessary to elucidate this problem.
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